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(57) ABSTRACT

An invention is disclosed for performing differencing of
graphical data in post-transform space for a remote presenta-
tion session. Graphical data is transformed from a first rep-
resentation to a second representation (e.g. witha DWT), and
then a difference is taken of the post-transform data and the
post-transform data of the frame that preceded the current
frame. This difference is then encoded and transmitted to a
client, which decodes it, and creates a representation of the
graphical data using the delta, and a previously determined
representation of the previous frame. By performing differ-
encing in post-transform space, fidelity of the remote presen-
tation session is retained while it may decrease bandwidth.
This may occur because the entropy of the delta representa-
tion is usually lower than a non-delta representation while the
scheme retains the identical data of the final decoded image of
the non-delta version of the same compression scheme.
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1
TRANSFORM SPACE DIFFERENCE
COMPRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/034,084, filed Sep. 23, 2013, now U.S. Pat.
No. 8,977,068, issued on Mar. 10, 2015, which is a continu-
ation of U.S. patent application Ser. No. 13/110,762, filed
May 18, 2011, now U.S. Pat. No. 8,542,934, issued on Sep.
24,2013, hereby incorporated by reference in their entireties.

BACKGROUND

In a remote presentation session, a client computer and a
server computer communicate across a communications net-
work. The client sends the server locally-received input, such
as mouse cursor movements and keyboard presses. In turn,
the server receives this input and performs processing asso-
ciated with it, such as executing an application in a user
session. When the server’s processing results in output, such
as graphical output or sound, this output is sent to the client
for presentation. In this manner, applications appear to a user
of'the client to execute on the client when, they in fact, execute
on the server.

The graphical output generated by the server in a remote
presentation often taxes, or even exceeds, the bandwidth
available between the client and the server. In view of this
limitation of bandwidth, it is common for the server to com-
press the graphical data before transmitting it across the com-
munications network. When the client receives this com-
pressed data, it then un-compresses the data before displaying
it.

There are many problems with compressing graphical data
for transmission across a communications network, some of
which are well known.

SUMMARY

One way that images are compressed for transmission in a
remote presentation session stems from the fact that, often,
these images are a sequence of images of a user’s computer
desktop and application windows. Where these images rep-
resent multiple snapshots of the desktop per second, there are
many times when there is little difference between two con-
secutive images. Where there is little difference between an
image that is being sent to the client and an image that the
client already possesses, bandwidth may be preserved by not
sending the entirety of this new image, but rather only the
differences between the old image and the new image. Tech-
niques that comprise sending the difference between the old
image and the new image are generally referred to as “differ-
encing” or “delta” techniques.

There also differencing techniques that use motion com-
pensation. In motion compensation techniques, data redun-
dancy, including positional displacement, is determined.
While motion compensation may produce good predictive
redundancy encoding, it is computationally expensive to
compute the motion compensation.

There are also differencing techniques that use pre-trans-
form differencing. Here, in the process of preparing image
data to send to a remote presentation client, the image data is
transformed from a first representation to a second represen-
tation. An example of such an image transform is a discrete
wavelet transform (DWT). Such transformations take visual
data and convert them to data with high entropy, where high
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values correspond to noticeable image features and low val-
ues are less noticeable. A problem with techniques that cal-
culate a difference before performing an image transform is
that the visual importance of color values in pre-transform
space may not correspond to their independent absolute val-
ues (whereas the relationship between importance and abso-
lute value may be stronger in post-transform space), so after
performing pre-transform differencing then applying the
transform, quantizing by scaling to remove the least-signifi-
cant bits of the values weakens the underlying assumptions of
the transform and thus can produce anomalies not seen in a
non-delta solution. There is an additional problem that deltas
performed before the transform have to be against decoded
prior frames, not the raw image since that is the data the client
will have. Since that data is not intrinsically available on the
encoder side, it also needs to be calculated there as well.

In embodiments of the invention then, differencing is per-
formed in post-transform space rather than pre-transform
space. An image is first transformed from a first representa-
tion to a second representation then it is optionally quantized.
Then the transformed and quantized data is differenced
against a transformed and quantized version of the previous
frame to produce a delta. This delta is entropy encoded and
transmitted to a client for display in a remote presentation
session. By performing differencing after performing image
transformation and quantization, full data integrity is pre-
served so fidelity of the remote presentation session will be
maintained while it may decrease bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example general purpose computing
environment in which embodiments of the invention may be
implemented.

FIG. 2 depicts an example process flow for differencing
data in post-transform space.

FIG. 3 depicts quantizing data.

FIG. 4 depicts performing differencing data using wrap-
ping subtraction operations.

FIG. 5 depicts performing differencing data using exclu-
sive-or operations.

FIG. 6 depicts run-length encoding data.

FIG. 7 depicts entropy encoding data.

FIG. 8 depicts bit packing data.

FIG. 9 depicts example operational procedures for differ-
encing data in post-transform space.

FIG. 10 depicts operational procedures for differencing
data in post-transform space in addition to the operational
procedures of FIG. 9.

FIG. 11 depicts further operational procedures for differ-
encing data in post-transform space in addition to the opera-
tional procedures of FIG. 9.

FIG. 12 depicts an example remote presentation session
server wherein aspects of the present disclosure can be imple-
mented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Embodiments of the invention may execute on one or more
computer systems. FIG. 1 and the following discussion are
intended to provide a brief general description of a suitable
computing environment in which embodiments of the inven-
tion may be implemented.

FIG. 1 depicts an example general purpose computing
system. The general purpose computing system may include
a conventional computer 20 or the like, including processing
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unit 21. Processing unit 21 may comprise one or more pro-
cessors, each of which may have one or more processing
cores. A multi-core processor, as processors that have more
than one processing core are frequently called, comprises
multiple processors contained within a single chip package.

Computer 20 may also comprise graphics processing unit
(GPU)90. GPU 90 is a specialized microprocessor optimized
to manipulate computer graphics. Processing unit 21 may
offload work to GPU 90. GPU 90 may have its own graphics
memory, and/or may have access to a portion of system
memory 22. As with processing unit 21, GPU 90 may com-
prise one or more processing units, each having one or more
cores.

Computer 20 may also comprise a system memory 22, and
a system bus 23 that communicative couples various system
components including the system memory 22 to the process-
ing unit 21 when the system is in an operational state. The
system memory 22 can include read only memory (ROM) 24
and random access memory (RAM) 25. A basic input/output
system 26 (BIOS), containing the basic routines that help to
transfer information between elements within the computer
20, such as during start up, is stored in ROM 24. The system
bus 23 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, or a
local bus, which implements any of a variety of bus architec-
tures. Coupled to system bus 23 may be a direct memory
access (DMA) controller 80 that is configured to read from
and/or write to memory independently of processing unit 21.
Additionally, devices connected to system bus 23, such as
storage drive I/F 32 or magnetic disk drive I/F 33 may be
configured to also read from and/or write to memory inde-
pendently of processing unit 21, without the use of DMA
controller 80.

The computer 20 may further include a storage drive 27 for
reading from and writing to a hard disk (not shown) or a
solid-state disk (SSD) (not shown), a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29,
and an optical disk drive 30 for reading from or writing to a
removable optical disk 31 such as a CD ROM or other optical
media. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are shown as connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer-readable storage
media provide non-volatile storage of computer readable
instructions, data structures, program modules and other data
for the computer 20. Although the example environment
described herein employs a hard disk, a removable magnetic
disk 29 and a removable optical disk 31, it should be appre-
ciated by those skilled in the art that other types of computer
readable media which can store data that is accessible by a
computer, such as flash memory cards, digital video discs or
digital versatile discs (DVDs), random access memories
(RAMS), read only memories (ROMs) and the like may also
be used in the example operating environment. Generally,
such computer readable storage media can be used in some
embodiments to store processor executable instructions
embodying aspects of the present disclosure. Computer 20
may also comprise a host adapter 55 that connects to a storage
device 62 via a small computer system interface (SCSI) bus
56.

A number of program modules comprising computer-read-
able instructions may be stored on computer-readable media
such as the hard disk, magnetic disk 29, optical disk 31, ROM
24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38. Upon execution by the processing unit, the
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computer-readable instructions cause actions described in
more detail below to be carried out or cause the various
program modules to be instantiated. A user may enter com-
mands and information into the computer 20 through input
devices such as a keyboard 40 and pointing device 42. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite disk, scanner or the like. These and
other input devices are often connected to the processing unit
21 through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port or universal serial bus (USB). A
display 47 or other type of display device can also be con-
nected to the system bus 23 via an interface, such as a video
adapter 48. In addition to the display 47, computers typically
include other peripheral output devices (not shown), such as
speakers and printers.

The computer 20 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 49. The remote computer 49 may
be another computer, a server, a router, a network PC, a peer
device or other common network node, and typically can
include many or all of the elements described above relative
to the computer 20, although only a memory storage device
50 has been illustrated in FIG. 1. The logical connections
depicted in FIG. 1 can include a local area network (LAN) 51
and a wide area network (WAN) 52. Such networking envi-
ronments are commonplace in offices, enterprise wide com-
puter networks, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 20 can be connected to the LAN 51 through a network
interface or adapter 53. When used in a WAN networking
environment, the computer 20 can typically include a modem
54 or other means for establishing communications over the
wide area network 52, such as the INTERNET. The modem
54, which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked
environment, program modules depicted relative to the com-
puter 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the net-
work connections shown are exemplary and other means of
establishing a communications link between the computers
may be used.

In an embodiment where computer 20 is configured to
operate in a networked environment, OS 35 is stored remotely
on a network, and computer 20 may netboot this remotely-
stored OS rather than booting from a locally-stored OS. In an
embodiment, computer 20 comprises a thin client where OS
35 is less than a full OS, but rather a kernel that is configured
to handle networking and display output, such as on monitor
47.

FIG. 2 depicts an example process flow for differencing
data in post-transform space. In embodiments, the process
flow of FIG. 2 may be implemented as processor-executable
instructions stored in memory 22 of FIG. 1, and executed by
processor 21 to cause the process flow to occur. It may be
appreciated that there are embodiments of the invention that
do not implement all components depicted in FIG. 2, or that
implement the components (or a subset thereof) in a different
permutation than is depicted in FIG. 2.

The data may be initially transformed by image transfor-
mation component 202. The data processed by image trans-
formation component 202 may be a frame of image data in a
remote presentation session (sometimes referred to herein as
“graphical data”). A remote presentation server that imple-
ments the process flow of FIG. 2 may take a sequence of
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frames (e.g. a display of a computer desktop over time), and
process them for transmission to a client across a communi-
cations network.

An image transform is a transform that converts an image
from a first representation to a second representation. An
example of an image transform is a discrete wavelet transform
(DWT). ADWT is a wavelet transform in which the wavelets
are discretely (as opposed to continuously) sampled. ADWT
is commonly used to transform an image into a representation
that is more easily compressed than the original representa-
tion, and then compress the post-transform representation of
the image. A DWT is reversible, inasmuch as where a DWT
may be used to transform an image from a first representation
to a second representation, there is an inverse transform that
may be used to transform the image from the second repre-
sentation to the first representation. An example ofa DWT is
the transform used in the JPEG 2000 (Joint Picture Experts
Group) image compression standard.

A DWT decomposes the individual color components of
the array of pixels of an image into corresponding color
sub-bands. For example, after a single transform, an image
may be decomposed into four sub-bands of pixels, one cor-
responding to a first-level low (LL) pass sub-band, and three
other first-level sub-bands corresponding to horizontal (HL),
vertical (LH), and diagonal high pass (HH) sub-bands. Gen-
erally, the decomposed image shows a coarse approximation
image in the LL sub-band, and three detail images in higher
sub-bands. Each first-level sub-band is a fourth of the size of
the original image (i.e., 32x32 pixels in the instance that the
original image was 64x64 pixels). The first-level low pass
band can further be decomposed to obtain another level of
decomposition thereby producing second-level sub-bands.
The second-level LL sub-band can be further decomposed
into four third-level sub-bands.

Where a DWT has been used to decompose an image to
third-level sub-bands, an inverse DWT may be used to com-
pose the third-level sub band images into a second-level LL
sub-band image. The inverse DWT may then be used to take
the second-level LL sub-band image, a second-level LH sub-
band image, a second-level HL. sub-band image, and a sec-
ond-level HH sub-band image 716 and compose them to form
first-level a LL sub-band image. Finally, the inverse DWT
may be used to take the first-level LL sub-band image, a
first-level LH sub-band image, a first-level HL. sub-band
image, and a first-level HH sub-band image and compose
them into the image.

In embodiments, an image transform such as DWT may be
used to generate an array of coefficients that correspond to the
frequencies present in the image. The coefficients in the array
may then be quantized to both reduce the range of values that
a coefficient may have, and zero-out coefficients with small
values. Where quantization increases the amount of coeffi-
cients with a value of zero, then run-length encoding runs of
zeroes within the array will generally increase the amount of
compression generated by such run-length encoding relative
to the un-quantized array.

After the data has been transformed by image transforma-
tion component 202, the transformed data is quantized by
quantization component 204. Quantization component 204
allows data to be more easily compressed by converting it
from a larger range of possible values to a smaller range of
possible values. For instance, the data may comprise a plu-
rality of pixel values—each pixel value comprising three
separate 8-bit values. 8 bits may range from 0 to 255. To
quantize this data, each value may be logically shifted at least
one bit to the right, so that the values now range over 7 bits, or
from 0 to 127. Even though the values now range over a 7-bit
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space, they may still be stored using 8 bits (a 0 having been
prepended to each value). However, this act of quantizing the
data enables the data to be more greatly compressed at a later
stage of the process flow of FIG. 2, such as by entropy encod-
ing component 214.

After the data has been quantized by quantization compo-
nent 204, the transformed data is stored in current frame
buffer 206, and the frame that preceded it (the frame that was
previously stored in current frame buffer 206) is transferred to
and stored in previous frame buffer 208. In embodiments,
there is not a transfer operation of data from current frame
buffer 206 to previous frame buffer 208. Rather, each frame
remains in the place in memory where it is stored, and the
system that implements the process flow of FIG. 2 keeps track
which of these stored frames is the current frame and which is
the immediate previous frame, and updates these indications
as new current frames are processed.

Differencing component 210 uses both the frame stored in
current frame buffer 206 and the frame stored in previous
frame buffer 208 to calculate a difference of the two frames.
Some of the possible techniques for the differencing compo-
nent 210 to use are described with respect to FIGS. 5 and 6. A
remote presentation session client already has a copy of the
previous frame (or a representation thereof, if lossy compres-
sion is used further on in the process flow; also, the client
frame may not yet possess a copy of the previous frame; it
may be in transit across a communications network, or the
client may have lost its copy, as is described in greater detail
with respect to FIG. 12). Since the client already has the
previous frame, or will soon be receiving it, the client may
produce the current frame when provided only with the
changes between the current frame and the previous frame,
rather than the entire current frame. In a remote presentation
session, these frames may be very similar, because they are
frames of the same computer desktop. Given that, taking a
difference of the two frames may result in many values being
set to zero (where the corresponding values in the two frames
are the same). Where many zeroes are produced as a result of
differencing the frames, performing run-length compression
of' the differenced delta to reduce runs of zeros may result in
large, lossless compression.

After differencing component 210 has produced a delta (or
“difference”) between the current frame and the previous
frame, this delta is compared against the current frame by
estimate entropy encoding component 212. Estimate entropy
encoding component 212 estimates whether entropy encod-
ing the delta or the current frame results in a smaller output, in
terms of bits. There may be situations where n encoded delta
actually occupies more space than its corresponding encoded
frame. Where this is the case, a remote presentation session
server may save bandwidth by transmitting the encoded
frame instead of the encoded delta. However, it may be com-
putationally- and time-expensive to encode both the delta and
the frame itself and compare the results. In view of that, an
estimation of which encoded data—the delta or the frame—is
smaller may be made, and the result of this estimation com-
parison may be encoded. Using an estimation may not always
result in the smallest encoded data, but it may be preferable to
conclusively determining the better choice due to avoiding
the cost of truly determining, instead of estimating, which is
the preferred result.

Estimate entropy encoding component 212 may perform
this estimation by counting the number of zeros in each of the
delta and the frame itself, and determining whichever has the
greater number of zeros to be the result of the estimation. In
embodiments, rather than counting the number of zeros, esti-
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mate entropy encoding component 212 may count the num-
ber of values below a threshold.

After estimate entropy encoding component 212 has deter-
mined whether to encode the delta or the frame itself, which-
ever of those two entropy encoding component determined to
have entropy encoded is sent to entropy encoding component
214. Entropy encoding component 214 entropy encodes the
received input and outputs entropy encoded data that may be
transmitted by the remote presentation session server to the
client across a communications network. Entropy encoding
component 214 may comprise run-length encoding the data,
entropy encoding the data, and bit-packing the data, as is
described with respect to FIGS. 7-9.

Each of FIGS. 3-9 depict data of a frame as it may exist at
various points within the example process flow of FIG. 2.

FIG. 3 depicts quantizing data. In embodiments, providing
data 300 as input to quantization component 204 of FIG. 2
results in an output of quantized data 300'. Quantizing data
comprises converting data from a larger range of values to a
smaller range of values. As depicted, data 300 and quantized
data 300" both comprise 8 bits. Data 300 ranges from 0 to 255,
inclusive (0b0000 0000 to Ob1111 1111), while quantized
data 300' ranges from the smaller space of 0 to 127 inclusive
(0b0000 0000 to 0bO111 1111). This quantization may be
accomplished by logically shifting all of the bits to the right
by one bit, dropping the rightmost bit, and adding a 0 to the
newly vacant leftmost position. That is, bits 302 are the same
as bits 302', only in a different position, bit 304 is dropped,
and bit 306 is newly added.

Where a sequence of values is quantized, each value within
the sequence may be quantized, rather than the sequence as a
whole. Thatis, ifthe sequence comprises 10 8-bit values, each
of those 8-bit values is separately quantized, rather than
merely quantizing the full 80 bit sequence of those 10 values
as a whole.

FIG. 4 depicts performing differencing data using wrap-
ping subtraction operations. In embodiments, providing num-
bers 402 and 404 as input to differencing component 210 of
FIG. 2 results in output comprising number 406. Wrapping
subtraction is similar to modular arithmetic, in that, when a
subtraction would result in a negative number in a non-wrap-
ping scenario, in wrapping, a negative number is expressed as
a positive number confined to an allowable range of values.

As depicted, each of numbers 402-406 are 4-bit values that
can range from 0 to 15 (0b0000 to Ob1111). Number 402 is
0b1001, or 9. Number 404 is O0b1100, or 10. In non-wrapping
subtraction, 8 minus 9 would be -1. However, here wrapping
subtraction is used, and the result of subtracting number 404
from number 402 is shown as number 406, which is Ob1111
(15). Inthis space confined from O to 15, 15 is equivalent to -1
in that 15 is 1 integer wrapped past zero (3to2to 1 to O to 15
tol4d...).

FIG. 5 depicts performing differencing data using exclu-
sive-or operations. In embodiments, providing numbers 502
and 504 as input to differencing component 210 of FIG. 2
results in output comprising number 506. In an exclusive or,
or XOR, two bits are compared. Where they are both 1 or both
0, the result is 0. Where one is 1 and the other is 0, the result
is 1. Both the first and third bits (counting from the leftmost
bit) of numbers 502 and 504 are the same—both first bits are
1 and both third bits are 0. So, the result of XORing those bits
is 0 in both cases—and this is reflected in the first and third
bits of result 506 being 0. The second and fourth bits of
numbers 502 and 504 differ from the second and fourth bits in
the other number, so the result of XORing these bits is 1 in
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both cases, and this is reflected in the second and fourth bits of
result 506 being 1. Put another way, 0b1001 XOR
0b1100=0b0101.

FIG. 6 depicts run-length encoding data. Run-length
encoding may be performed on the delta of FIG. 5 to com-
press the delta losslessly by compressing runs of zeros. In
embodiments, run-length encoding as depicted in FIG. 6 is
performed by entropy encoding component 214 of FIG. 2. As
depicted, the sequence of values 600 is run-length encoded
into the run-length encoded sequence of values 600'. Each of
sequence 600 and 600' may comprise an array of values.
Sequence 600 comprises values 602-614, which are 3, -4, 18,
-1, 4, -1, and 6, respectively. The first value in each of
sequence 600 and sequence 600' (respectively, 602 and 602")
is 3. This value of 3 remains unchanged between arrays
because it is not equal to zero, and thus not encoded. Then
value 604', which is -4, represents all of values 604, 606, and
608—a run of three zeros. Those three zeros are represented
as a negative number equal to the negative of the number of
zeros, minus 1. Here, that is —(3)-1=-4. Value 606' is 18, the
same as value 610 (again, unchanged because it is not part of
a run of zeros). Value 608' is -1, a reserved number used as a
divider between non-zero values from sequence 600. Value
610’ is 4, same as value 612. Value 612' is another divider of
-1. Finally, value 614' is 6, same as value 614.

In embodiments, inserting a reserved divider number
between nonzero values may be useful in increasing the speed
at which an entropy encoder may operate.

FIG. 7 depicts entropy encoding data. Entropy encoding
may be performed on the run-length encoded data of FIG. 6 in
conjunction with bit-packing the data as depicted in FIG. 8 to
further compress the data. In embodiments, entropy encoding
as depicted in FIG. 7 is performed by entropy encoding com-
ponent 214 of FIG. 2.

Sequence 700 comprises a set of values corresponding to
run-length encoding sequence 600' and sequence 750 a set of
lengths that correspond to those values of sequence 700. In an
embodiment, values 702-714 are stored in sequence 700 as an
array of 16-bit short integers. The rightmost bits of each of the
values contained within sequence 700 equals the value of the
corresponding value contained within sequence 600'. That is,
value 702 is 7, or Ob111, and corresponding value 602' is 3, or
Ob11. The rightmost two bits of Ob111 are equal to Ob11.
Likewise, value 706 is 146, or 0b10010010, and correspond-
ing value 606' is 18, or 0b10010. The rightmost 5 bits of
0b10010010 are equal to 0b10010. This likewise applies for
values 704 and 604', 708 and 608', 710 and 610", 712 and 612",
and 714 and 614'.

With respect to sequence 750, this sequence represents the
bit lengths to be used to represent the values in sequence 700.
In an embodiment, these bit lengths 752-764 are stored in
array 700 as 16-bit short integers. For example, bit length 752
is 4, signifying that value 702 will be represented using 4 bits.
Value 702 is 7, which can be represented using 3 bits—O0b111.
Even though 7 can be represented using 3 bits, 4 bits will be
used to represent is according to the entropy encoding
scheme—O0b0111. Likewise, value 704—4——can be repre-
sented using 3 bits (0b100), but according to bit length 754
shall be represented using 5 bits (0b00100) according to the
entropy encoding scheme. The same applies for bit lengths
and values 756 and 706, 758 and 708, 760 and 710, 762 and
712, and 764 and 714, respectively.

Those leftmost bits not used to represent the value in
sequence 700' may be used to determine how many bits are
used to represent the value. For instance, value 606' is 18,
entropy-encoded value 706 is 146 and bit-length 756 is 9.
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That is, 146 is encoded with 9 bits as 0b010010010. The five
rightmost bits of 0b010010010 (0b10010) encode 18 in
binary, and then the remaining 4 leftmost bits (0b0100) are
used to signify how many total bits are used to encode 18 with
the entropy encoder. Where the leftmost bit is 0, this signifies
that the number of bits used to represent the value in sequence
600" differs from the number of bits used to represent the
previous value in sequence 600" (for the first element of
sequence 600", this is determined relative to one bit). Where
the leftmost bit is 1, this signifies that the number of bits used
to represent the value in sequence 600' does not differ from
the number of bits used to represent the previous value in
sequence 600' (and, in fact, signifies that there are no “left-
most bits” as the term is used herein; that leftmost 1 is the first
bit of the rightmost bits—the value itself).

Where the leftmost bit is zero (signifying a change to the
number of bits used to represent a value in sequence 600'
relative to the value before it), the second leftmost bit signifies
whether the number of bits is to be increased or decreased. A
1 signifies an increase and a zero signifies a decrease. The
number of zeros that follow this second bit signify the amount
ofiincrease or decrease. The amount of increase or decrease is
equal to one more than the number of these zeros. Then, the
next leftmost 1 is both a terminator for this run of zeros, and
the first bit of representing the value in sequence 600" itself
(e.g. the first rightmost bit as the term is used herein).

FIG. 8 depicts bit packing data. Bit packing data may be
performed on the run-length encoded data of FIG. 6 in con-
junction with entropy encoding the data as depicted in FIG. 7
to further compress the data. In embodiments, bit packing as
depicted in FIG. 8 is performed by entropy encoding compo-
nent 214 of FIG. 2.

There are 4 bits in 802, representing a binary encoding of'7,
and the two rightmost bits encode 3. These numbers—4, 7,
and 3—are the bit-length 752, entropy-encoded value 702,
and run-length-encoded value 602, respectively. Likewise,
bits 804 is made up of 5 bits, as specified by bit-length 754 as
the number of bits to be used to express entropy-encoded
value 704. Similar relationships hold for bits 806-814, bit-
lengths 756-764, and entropy-encoded values 706-714.

Whereas all of the values in sequences 600, 600', 700 and
750 may be stored as 16-bit shorts with superfluous leading
zeros, the output bitstream 800 removes these leading zeros to
compress the representation of the values in sequence 600.
For instance, where 16-bit shorts are used to represent the
values in array 600, this would require 112 bits (7 values at 16
bits per value). However, these same 7 values may be repre-
sented in bitstream 800 with only 29 bits, as depicted, which
is a savings of nearly 75%.

FIG. 9 depicts example operational procedures for difter-
encing data in post-transform space. Various operational pro-
cedures depicted in FIG. 9 may be used to produce the data
manipulations depicted in FIGS. 3-8. In embodiments, the
operational procedures of FIG. 9 may be implemented on
computer 20 of FIG. 1 to effectuate a remote presentation
session between computer 20 and remote computer 49 of
FIG. 1. The operations of FIG. 9 may be used on a series of
graphical data (such as frames of a computer desktop that is
being sent across a remote presentation session) where a
second graphical data is operated on after a first graphical data
has already been operated on.

Operation 902 depicts transforming the first graphical data
from a first representation to a second representation. Opera-
tion 902 may be used to produce a transformed first data, the
transformed first data comprising a first set of values. In
embodiments, operation 902 comprises transforming the data
from a first representation to a second representation. The first
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set of values may comprise a set of values of coefficients to
functions, such as produced by a DWT transform. Operation
904 may be effectuated in a similar fashion as discrete wave-
form transformation component 202 of FIG. 2 is effectuated.

Operation 904 depicts transforming the second graphical
data from the first representation to the second representation.
Operation 904 may be used to produce a transformed second
data, the transformed second data comprising a second set of
values. Operation 904 may be effectuated in a manner similar
to operation 902.

Operation 906 depicts quantizing the transformed second
data. This operation may comprise, where the transformed
second data comprises a plurality of values, bitwise logically
right-shifting each value, and discarding a least-significant bit
of each value. This operation may be used to produce quan-
tized data 300' from data 300. Operation 906 may be effec-
tuated in a similar fashion as quantizing component 204 of
FIG. 2 is effectuated.

Operation 908 depicts determining a delta between the
transformed first data and the transformed second data. In
embodiments, operation 908 is performed on the transformed
first data and transformed second data after each has been
quantized. In embodiments, this difference may be deter-
mined based on the first set of values and the second set of
values, and used to produce a delta set of values. Operation
908 may be effectuated in a similar fashion as differencing
component 210 of FIG. 2 is effectuated.

In embodiments operation 908 comprises performing
wrapping subtraction on the transformed first data relative to
the transformed second data. Wrapping subtraction may be
implemented in a similar fashion as described with respect to
how, in FIG. 4, numbers 404 is wrapping-subtracted from
number 402 to produce number 406. In embodiments, opera-
tion 908 comprises performing a bitwise exclusive-or (XOR)
on the transformed first data relative to the transformed sec-
ond data. An XOR may be implemented in a similar fashion
as described with respect to how, in FIG. 5, numbers 502 and
504 are XOR’ed to produce number 506.

In embodiments where the transformed second data com-
prises a plurality of 8-bit values, operation 908 may comprise
converting each 8-bit value of the plurality of 8-bit values to
a 16-bit value. Performing the differencing operation may
cause an overflow to occur—an attempt to store a value that
cannot be stored in 8-bits—and this overflow may spill over
into the contiguous value, corrupting it. In such an instance,
the values may be converted from 8 bits to 16 bits, so any
overflow flows into the new 8 bits, rather than another value
altogether.

Operation 910 depicts determining that the output of
encoding the delta is likely to be smaller than the second
graphical data. This may be effectuated in a similar manner as
estimate entropy encoding component 212 of FIG. 2.

Operation 912 depicts encoding the delta. This operation
may be performed on a set of values of the delta to produce an
encoded delta. Operation 912 may be effectuated in a similar
manner as entropy encoding component 214 of FIG. 2.

In embodiments where the delta comprises a plurality of
values, operation 910 may comprise run-length encoding a
sequence of one or more contiguous values of the plurality of
values that are equal to zero. This run-length compressing
may be effectuated in a similar fashion as described with
respectto how, in FIG. 6, sequence of values 600 is run-length
encoded to produce run-length encoded sequence of values
600'".

The operation of encoding the delta set of values as
depicted in operation 914 may comprise entropy encoding the
delta set of values. In entropy encoding, a value is encoded
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based on itself and the value that comes before it in an ordered
sequence (or a reference value, if it is the first value in the
sequence). For instance, in embodiments where the delta
comprises a first value, a second value and a third value in a
set of ordered values, the first value being contiguous to the
second value in the set of ordered values, the second value
being contiguous to the third value in the set of ordered
values, operation 912 may comprise entropy encoding the
second value based on the second value and the first value;
and entropy encoding the third value based on the third value
and the second value. That is, where the first, second, and
third values appear contiguously in the set of values, the
second value may be encoded based on itself and the first
value (and no other values in the sequence), and the third
value may be encoded based on itself and the second value
(and no other values in the sequence).

Operation 914 depicts, bit-packing the encoded delta. The
result of encoding a set of values may be that each value may
be expressed using fewer bits than are contained in the data
structure used to represent the value. For instance, the values
in the sequence may be stored in 16-bit short integer data
structures. Where the third value is 3, it may be that the value
may be encoded using 7 bits, rather than the 16 in the data
structure. In such a case, in bit packing, these nine superfluous
bits may be discarded, to save on the space necessary to store
the encoded values. Operation 914 may be effectuated in a
manner similar to described with respect to FIG. 7, where set
of'values 700 is bit packed to produce bit-packed set of values
700'.

Operation 916 depicts transmitting the encoded delta to a
computer across a communications network, such that the
computer decodes the delta, combines the decoded delta with
a representation of the first graphical data stored in a memory
of the computer to produce a representation of the second
graphical data, and displays the representation of the second
graphical data on a display device. After the computer upon
which the present operations are executed has encoded the
delta, it may transmit the encoded delta to the client computer.
This computer receives the encoded delta, and then decodes
the delta to recreate the delta. The computer already has
stored a representation of the first graphical data (it may be a
copy of the first graphical data, or it may be a lossy version of
the first graphical data, where lossy encoding or quantization
of'the first graphical data was performed by the server before
sending it to the client). Since the delta comprises the differ-
ences between the first graphical data and the second graphi-
cal data, where the client combines the delta with the repre-
sentation of the first graphical data, it may produce a
representation of the second graphical data (again, either a
copy of the second graphical data, or a lossy version of the
second graphical data).

This combination of the delta and the representation of the
first graphical data may be performed in a manner that
reverses the determination of the delta performed in operation
908. For instance, where the delta is determined through
wrapping subtraction, the combination may be determined
through wrapping addition. Once a representation of the sec-
ond graphical data has been produced, the client computer
may display the representation of the second graphical data
on a display device.

In embodiments, operation 916 comprises transmitting the
encoded delta to the computer across the communications
network, such that the computer decodes the delta to produce
a decoded delta, combines the decoded delta with a represen-
tation of the first graphical data to produce a representation of
the transformed second data, transforms the transformed sec-
ond data from the second representation to the first represen-
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tation to produce a representation of the second graphical
data, and displays the representation of the second graphical
data on the display device. That is, operation 916 may per-
form the reverse of operations 902-914. Where the data has
been transformed from a first representation to a second rep-
resentation, the data may be transformed back from the sec-
ond representation to the first representation. Likewise,
where the data has been encoded, it may be decoded, and the
reverse of other operations may be implemented.

In embodiments where the graphical data comprises part of
an image, operation 916 comprises transmitting an indication
of a position of the second graphical data within the image,
such that the computer displays the representation of the
second graphical data at the position along with displaying a
representation of the image. A tiling scheme may be usedin a
remote presentation session. Each image of a computer desk-
top is subdivided into a plurality of tiles. Then, in embodi-
ments, only the tiles that are updated are sent to the client,
along with an indication of the position where those tiles are
positioned within the greater image of the computer desktop.

It may be appreciated that there are embodiments of the
invention that do not implement every operation depicted in
FIG. 9, or that implement the operations of FIG. 9 (or a subset
thereof) in an order different than is depicted in FIG. 9. In
embodiments of the invention, the operational procedures of
FIG. 9 end with operation 918. In other embodiments of the
invention, the operational procedures of FIG. 9 flow to FIG.
10, or FIG. 11, which are united to FIG. 9 by their shared
depiction of operation 918.

FIG. 10 depicts operational procedures for differencing
data in post-transform space in addition to the operational
procedures of FIG. 9. In embodiments of the invention, after
performing operation 916 in FIG. 9, the operations flow to
operation 918, which is the last operation depicted in FIG. 9,
and the first operation depicted in FIG. 10.

Itmay be thatnot all frames of graphical data are sent to the
client as deltas. Where it requires less bandwidth to send the
encoded frame itself (or a lossy representation thereof) rather
than the delta, this “absolute” data may be sent instead of the
delta. In operation 1020, while the second graphical data was
sent as a delta of the first graphical data, here the third graphi-
cal data is sent as absolute data, instead of as a delta of the
second graphical data.

It may be preferable to send absolute data instead of delta
data in a situation where the new frame has data that is
unrelated to the previous frame, and this new unrelated data is
easily compressible in its absolute form (such as if it contains
long strings of zero values, which can be run-length com-
pressed).

It may be a computationally- and time-expensive process
to encode both the delta and the absolute data, and then
compare the two to see which requires less bandwidth to
transmit. Instead, a less computationally- and time-expensive
estimation of the sizes of the delta and the absolute may be
performed. This may be performed in a similar manner as
estimate entropy encoding component 212 of FIG. 2.

Operation 1002 depicts transforming a third graphical data
from the first representation to the second representation.
Operation 1002 may be effectuated in a similar manner as
operation 904 of FIG. 9.

Operation 1004 depicts determining a delta between the
transformed third data and the transformed second data. In
embodiments, operation 1004 is performed on the trans-
formed third data and transformed second data after each has
been quantized. Operation 1004 may be effectuated in a simi-
lar manner as operation 908 of FIG. 9.
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Operation 1006 depicts determining that the output of
encoding the delta is likely to be larger than the third graphical
data. This may be the case, for instance, where the third
graphical data has little relation to the second graphical data,
so expressing the third graphical data in terms of the differ-
ences between it and the second graphical data is likely to
require more storage space than the third graphical data itself.

Operation 1008 depicts encoding the third graphical data.
Operation 1008 may be effectuated in a similar manner as
operation 912 of FIG. 9.

Operation 1010 depicts transmitting the encoded third
graphical data to the computer across the communications
network, such that the computer displays a representation of
the graphical data on a display device based on receiving the
encoded third graphical data. In contrast to operation 916 of
FIG. 9, here the computer displays a representation of the
third graphical data without doing so in reference to a repre-
sentation of the second graphical data. To distinguish
between the present sending of a complete or “absolute”
graphical data from sending only a delta graphical data, the
device which implements the operational procedures of FIG.
10 may send the computer an indication of what type of
graphical data is being sent (absolute or delta).

FIG. 11 depicts further operational procedures for difter-
encing data in post-transform space in addition to the opera-
tional procedures of FIG. 9. In embodiments of the invention,
after performing operation 916 in FIG. 9, the operations flow
to operation 918, which is the last operation depicted in FIG.
9, and the first operation depicted in FIG. 10.

There may be times when the client loses its state—its
possession of the previous frame (here, the representation of
the second graphical data). For instance, the client’s memory
may become corrupted. In such a case, the client may send an
indication to the server of this fact. The server may then,
regardless of whether it estimates that the encoded absolute
data or the encoded delta (based on the third graphical data) is
smaller in size, send the encoded absolute data, so that the
client may display a representation of the third graphical data
on a display device.

Operation 1102 depicts determining to send the computer
a representation of a third graphical data. This may occur, for
instance, when a third graphical data is produced representing
a frame of a computer desktop in a user session corresponding
to a user that is conducting a remote presentation session
between the computer and the device upon which the opera-
tional procedures of FIG. 11 are implemented.

Operation 1202 depicts receiving an indication from the
computer that it no longer has the representation of the second
graphical data. This may occur, for example, where the com-
puter’s memory location where it stores the second graphical
data becomes corrupted and the computer determines this to
be the case.

Operation 1106 depicts encoding the third graphical data.
This operation may be effectuated in a manner similar to
operation 912 of FIG. 9.

Operation 1108 depicts transmitting the encoded third
graphical data to the computer across the communications
network, such that the computer displays a representation of
the graphical data on a display device based on receiving the
encoded third graphical data. Operation 1108 may be effec-
tuated in a manner similar to operation 1010 of FIG. 10. Since
the computer has sent an indication that it no longer has the
representation of the second graphical data, it may be that it
expects absolute data rather than delta data to begin with, and
thus, will recognize and process absolute data properly with-
out receiving an indication that the data is absolute.
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FIG. 12 generally illustrates an example environment
wherein aspects of the present invention can be implemented.
For instance, the server 1204 may implement the operational
procedures of FIGS. 9, 10 and/or 11. One skilled in the art can
appreciate that the example elements depicted by FIG. 12 are
illustrated to provide an operational framework for describing
the present invention. Accordingly, in some embodiments the
physical layout of each environment may be different
depending on different implementation schemes. Thus the
example operational framework is to be treated as illustrative
only and in no way limit the scope of the claims.

Generally, FIG. 12 depicts a high level overview ofa server
environment that can be configured to include aspects of the
present invention. In reference to the figure, depicted is a
server 1204 that can include circuitry configured to effectuate
aremote presentation session server, or in other embodiments
the server 1204 can include circuitry configured to support
remote desktop connections. In the depicted example, the
server 1204 can be configured to generate one or more ses-
sions for connecting clients such as sessions 1 through N
(where N is an integer greater than 1). Briefly, a session in
example embodiments of the present invention can generally
include an operational environment that is effectuated by a
plurality of subsystems, e.g., software code, that are config-
ured to interact with a kernel 1214 of server 1204. For
example, a session can include a process that instantiates a
user interface such as a desktop window, the subsystems that
track mouse movement within the window, the subsystems
that translate a mouse click on an icon into commands that
effectuate an instance of a program, etc. A session can be
generated by the server 1204 on a user by user basis by the
server 1204 when, for example, the server 1204 receives a
connection request over a network connection from a client
1201. Generally, a connection request can first be handled by
the transport logic 1210 that can, for example, be effectuated
by circuitry of the server 1204. The transport logic 1210 can
in some embodiments include a network adaptor; firmware,
and software that can be configured to receive connection
messages and forward them to the engine 1212. As illustrated
by FIG. 12, the transport logic 1210 can in some embodi-
ments include protocol stack instances for each session. Gen-
erally, each protocol stack instance can be configured to route
user interface output to a client and route user input received
from the client to the session core 1244 associated with its
session.

Continuing with the general description of FIG. 12, the
engine 1212 in some example embodiments of the present
invention can be configured to process requests for sessions;
determine the functionality for each session; generate ses-
sions by allocating a set of physical resources for the session;
and instantiating a protocol stack instance for the session. In
some embodiments the engine 1212 can be effectuated by
specialized circuitry components that can implement some of
the above mentioned operational procedures. For example,
the circuitry in some example embodiments can include
memory and a processor that is configured to execute code
that effectuates the engine 1212. As depicted by FIG. 12, in
some instances the engine 1212 can receive connection
requests and determine that, for example, a license is avail-
able and a session can be generated for the request. In the
situation where the server 1204 is a remote computer that
includes remote desktop capabilities, the engine 1212 can be
configured to generate a session in response to a connection
request without checking for a license. As illustrated by FIG.
12, a session manager 1216 can be configured to receive a
message from an engine 1212 and in response to the message
the session manager 1216 can add a session identifier to a
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table; assign memory to the session identifier; and generate
system environment variables and instances of subsystem
processes in memory assigned to the session identifier.

As illustrated by FIG. 12, the session manager 1216 can
instantiate environment subsystems such as a runtime sub-
system 1240 that can include a kernel mode part such as the
session core 1244. For example, the environment subsystems
in an embodiment are configured to expose some subset of
services to application programs and provide an access point
to the kernel of the operating system 1214. In example
embodiments the runtime subsystem 1240 can control the
execution of processes and threads and the session core 1244
can send requests to the executive of the kernel 1214 to
allocate memory for the threads and schedule time for them to
be executed. In an embodiment the session core 1244 can
include a graphics display interface 1246 (GDI), a security
subsystem 1250, and an input subsystem 1252. The input
subsystem 1252 can in these embodiments be configured to
receive user input from a client 1201 via the protocol stack
instance associated with the session and transmit the input to
the session core 1244 for the appropriate session. The user
input can in some embodiments include signals indicative of
absolute and/or relative mouse movement commands, mouse
coordinates, mouse clicks, keyboard signals, joystick move-
ment signals, etc. User input, for example, a mouse double-
click on an icon, can be received by the session core 1244 and
the input subsystem 1252 can be configured to determine that
an icon is located at the coordinates associated with the
double-click. The input subsystem 1252 can then be config-
ured to send a notification to the runtime subsystem 1240 that
can execute a process for the application associated with the
icon.

In addition to receiving input from a client 1201, draw
commands can be received from applications and/or a desk-
top and be processed by the GDI 1246. The GDI 1246 in
general can include a process that can generate graphical
object draw commands. The GDI 1246 in this example
embodiment can be configured to pass its output to the remote
display subsystem 1254 where the commands are formatted
for the display driver that is attached to the session. In certain
example embodiments one or more physical displays can be
attached to the server 1204, e.g., in a remote desktop situa-
tion. In these example embodiments the remote display sub-
system 1254 can be configured to mirror the draw commands
that are rendered by the display driver(s) of the remote com-
puter system and transmit the mirrored information to the
client 1201 via a stack instance associated with the session. In
another example embodiment, where the server 1204 is a
remote presentation session server, the remote display sub-
system 1254 can be configured to include virtual display
driver(s) that may not be associated with displays physically
attacked to the server 1204, e.g., the server 1204 could be
running headless. The remote display subsystem 1254 in this
embodiment can be configured to receive draw commands for
one or more virtual displays and transmit them to the client
1201 via a stack instance associated with the session. In an
embodiment of the present invention, the remote display sub-
system 1254 can be configured to determine the display reso-
Iution for each display driver, e.g., determine the display
resolution of the virtual display driver(s) associated with vir-
tual displays or the display resolution of the display drivers
associated with physical displays; and route the packets to the
client 1201 via the associated protocol stack instance.

In some example embodiments the session manager 1216
can additionally instantiate an instance of a logon process
associated with the session identifier of the session that can be
configured to handle logon and logoff for the session. In these
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example embodiments drawing commands indicative of the
graphical user interface associated with the logon process can
be transmitted to the client 1201 where a user of the client
1201 can input an account identifier, e.g., a username/pass-
word combination, a smart card identifier, and/or biometric
information into a logon screen. The information can be
transmitted to server 1204 and routed to the engine 1212 and
the security subsystem 1250 of the session core 1244. For
example, in certain example embodiments the engine 1212
can be configured to determine whether the user account is
associated with a license; and the security subsystem 1250
can be configured to generate a security token for the session.

While the present disclosure has been described in connec-
tion with the preferred aspects, as illustrated in the various
figures, it is understood that other similar aspects may be used
or modifications and additions may be made to the described
aspects for performing the same function of the present dis-
closure without deviating there from. Therefore, the present
disclosure should not be limited to any single aspect, but
rather construed in breadth and scope in accordance with the
appended claims. For example, the various procedures
described herein may be implemented with hardware or soft-
ware, or a combination of both. The invention may be imple-
mented with computer-readable storage media and/or com-
puter-readable communication media. Thus, the invention, or
certain aspects or portions thereof, may take the form of
program code (i.e., instructions) embodied in tangible media,
such as floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium. Likewise, the invention,
or certain aspects or portions thereof, may be embodied in
propagated signals, or any other machine-readable commu-
nications medium. Where the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus configured for practicing the disclosed
embodiments. In addition to the specific implementations
explicitly set forth herein, other aspects and implementations
will be apparent to those skilled in the art from consideration
of the specification disclosed herein. It is intended that the
specification and illustrated implementations be considered
as examples only.

What is claimed:

1. A system for compressing a second graphical data that
occurs in a sequence of graphical data after a first graphical
data, comprising:

a processor; and

amemory communicatively coupled to the processor when

the system is operational, the memory bearing proces-

sor-executable instructions that, upon execution by the

processor, cause the system at least to:

transform the first graphical data from a first represen-
tation to a second representation to produce a trans-
formed first graphical data;

transform the second graphical data from a first repre-
sentation to a second representation to produce a
transformed second graphical data;

determine a difference between the transformed second
graphical data and the transformed first graphical
data; and

transmit the representation of the delta to a computer
across a communications network.

2. The system of claim 1, wherein the transformed second
graphical data comprises a plurality of 8-bit values, and
wherein determining a difference between the transformed
second graphical data and the transformed first graphical data
comprises:

converting each of the plurality of 8-bit values to a 16-bit

value.
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3. The system of claim 1, wherein the second graphical data
comprises part of an image, and the memory further bearing
instructions that, upon execution by the processor, cause the
system at least to:

transmit an indication of a location of the second graphical

data within the image to the computer.

4. The system of claim 1, wherein the first and second
graphical data each comprise graphical output from an appli-
cation executing in a user session, the first graphical data
generated by the application before the application generated
the second graphical data.

5. The system of claim 4, wherein the user session corre-
sponds to a remote desktop connection.

6. The system of claim 1, wherein the computer comprises
a thin client, and wherein the sequence of graphical data
corresponds to a user interface generated by a server commu-
nicating with the thin client via the communications network.

7. The system of claim 1, wherein the delta comprises a first
value, a second value and a third value in a set of ordered
values, the first value being contiguous to the second value in
the set of ordered values, the second value being contiguous
to the third value in the set of ordered values, and wherein the
representation of the delta is an encoded delta that is produced
by encoding the delta.

8. The system of claim 7, wherein encoding the delta to
produce the encoded delta comprises:

entropy encoding the second value based on the second

value and the first value; and

entropy encoding the third value based on the third value

and the second value.

9. The system of claim 1, the memory further bearing
instructions that, upon execution by the processor, cause the
system at least to:

transform a third graphical data from the first representa-

tion to the second representation to produce a third
graphical data; and

in response to receiving an indication that a representation

of the second graphical data is unavailable to the com-
puter, transmit a representation of the third graphical
data to the computer without determining a difference
between the second graphical data and the third graphi-
cal data.

10. A method carried out on one or more processors for
compressing a second graphical data that occurs in a
sequence of graphical data after a first graphical data, com-
prising:

transforming on the one or more processors the first graphi-

cal data from a first representation to a second represen-
tation to produce a first transformed data comprising a
first set of values;

transforming on the one or more processors the second

graphical data from the first representation to the second
representation to produce a second transformed data
comprising a second set of values;

determining on the one or more processors a difference

between the first set of values and the second set of
values to produce a delta set of values; and

transmitting the delta set of values to a computer across a

communications network.

11. The method of claim 10, further comprising:

quantizing the first set of values and the second set of

values prior to determining the difference.

12. The method of claim 11, wherein quantizing the first set
of values and the second set of values comprises:
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bitwise logically right-shifting each value of the first set of
values and the second set of values and discarding at
least a least-significant bit of each value.

13. The method of claim 10, wherein the difference is
determined by performing wrapping subtraction on the first
set of values relative to the second set of values.

14. The method of claim 10, wherein the difference is
determined by performing a bitwise exclusive-or on the first
set of values relative to the second set of values.

15. The method of claim 10, further comprising:

in response to estimating that a size of encoding the delta

set of values as stored in memory is less than a size of
encoding the second graphical data as stored in memory,
encoding the delta set of values to produce an encoded
delta.

16. The method of claim 15, wherein estimating the size of
encoding the delta set of values as stored in memory and the
size of encoding the second graphical data as stored in
memory comprises:

counting a number of zeros in each of the delta set of values

and the second graphical data; and

determining which of the delta set of values or the second

graphical data has the larger number of zeros.
17. A computer-readable storage device for compressing a
second graphical data that occurs in a sequence of graphical
data after a first graphical data, bearing computer-readable
instructions that, when executed upon a computer, cause the
computer to perform operations comprising:
transforming the second graphical data from a first repre-
sentation to a second representation to produce a second
transformed data comprising a second set of values;

determining a difference between a first set of values cor-
responding to the first graphical data and the second set
of values to produce a delta set of values; and

transmitting a representation of the delta set of values to a

computer across a communications network.

18. The computer-readable storage device of claim 17,
further bearing instructions that, when executed upon the
computer, cause the computer to perform operations compris-
ing:

transforming a third graphical data that occurs in the

sequence of graphical data after the second graphical
data from the first representation to the second represen-
tation to produce a third transformed data comprising a
third set of values;

determining a difference between the second set of values

and the third set of values to produce a second delta set
of values; and

inresponse to estimating that a size of encoding the second

delta set of values as stored in memory is greater than a
size of encoding the third graphical data as stored in
memory, encoding the third graphical data.

19. The computer-readable storage device of claim 17,
wherein transmitting the representation of the delta set of
values to the computer across the communications network
comprises:

run-length encoding a sequence of one or more contiguous

values in the delta set of values.

20. The computer-readable storage device of claim 19,
wherein run-length encoding the sequence of one or more
contiguous values in the delta set of values comprises:

inserting a reserved divider between non-zero values in the

delta set of values.

#* #* #* #* #*



